alg0505
  • 1:34:33,
  • 469 views,
  • 2022-05-05,
  • 上傳者: 系統管理者,
  •  0
 
 
 
  • 1. index 1
  • 2. An example of Kruskal’s algorithm
  • 3. ** after Algorithm_greedy.pptx
  • 4. An example of Kruskal’s algorithm
  • 5. The Details for Constructing an MST
  • 6. Slide 12
  • 7. Time Complexity of Kruskal’s Algorithm
  • 8. Prim’s Algorithm for Finding an MST
  • 9. An Example for Prim’s Algorithm
  • 10. Prim’s Algorithm for Finding an MST
  • 11. Time Complexity of Kruskal’s Algorithm
  • 12. Slide 12
  • 13. Time Complexity of Kruskal’s Algorithm
  • 14. Prim’s Algorithm for Finding an MST
  • 15. An Example for Prim’s Algorithm
  • 16. The Single-Source Shortest Path Problem
  • 17. An Example for Prim’s Algorithm
  • 18. The Single-Source Shortest Path Problem
  • 19. An Example for Prim’s Algorithm
  • 20. The Single-Source Shortest Path Problem
  • 21. Dijkstra’s Algorithm to Generate Single Source Shortest Paths
  • 22. The Single-Source Shortest Path Problem
  • 23. An Example for Prim’s Algorithm
  • 24. ** after Algorithm_greedy.pptx
  • 25. Two Feasible Solutions
  • 26. The 2-terminal One to Any Special Channel Routing Problem
  • 27. Gaussian elimination
  • 28. Step 2:How to find all cycles in a graph?[Reingold, Nievergelt and Deo 1977]How many cycles are there in a graph in the worst case?In a complete digraph of n vertices and n(n-1) edges:Step 3:How to check if a cycle is a linear combination of some cycles?U
  • 29. Gaussian elimination
  • 30. The 2-terminal One to Any Special Channel Routing Problem
  • 31. Two Feasible Solutions
  • 32. ** after Algorithm_greedy.pptx
  • 33. Two Feasible Solutions
  • 34. Redrawing Solutions
  • 35. At each point, the local density of the solution is the number of lines the vertical line intersects.The problem: to minimize the density. The density is a lower bound of the number of tracks.Upper row terminals: P1 ,P2 ,…, Pn from left to right.Lower ro
  • 36. Suppose that we have the minimum density d of a problem instance. We can use the following greedy algorithm: Step 1 : P1 is connected Q1. Step 2 : After Pi is connected to Qj, we check whether Pi+1 can be connected to Qj+1. If the density is incre
  • 37. Slide 41
  • 38. The knapsack Problem
  • 39. Slide 43
  • 40. The knapsack algorithm
  • 41. ** after Algorithm_greedy.pptx
  • 42. The knapsack algorithm
  • 43. Slide 43
  • 44. The knapsack Problem
  • 45. Slide 41
  • 46. Suppose that we have the minimum density d of a problem instance. We can use the following greedy algorithm: Step 1 : P1 is connected Q1. Step 2 : After Pi is connected to Qj, we check whether Pi+1 can be connected to Qj+1. If the density is incre
  • 47. At each point, the local density of the solution is the number of lines the vertical line intersects.The problem: to minimize the density. The density is a lower bound of the number of tracks.Upper row terminals: P1 ,P2 ,…, Pn from left to right.Lower ro
  • 48. Redrawing Solutions
  • 49. Two Feasible Solutions
  • 50. The 2-terminal One to Any Special Channel Routing Problem
  • 51. Gaussian elimination
  • 52. Step 2:How to find all cycles in a graph?[Reingold, Nievergelt and Deo 1977]How many cycles are there in a graph in the worst case?In a complete digraph of n vertices and n(n-1) edges:Step 3:How to check if a cycle is a linear combination of some cycles?U
  • 53. Detailed Steps for the Minimal Cycle Basis Problem
  • 54. A greedy algorithm for finding a minimal cycle basis:Step 1: Determine the size of the minimal cycle basis, denoted as k.Step 2: Find all of the cycles. Sort all cycles by weights.Step 3: Add cycles to the cycle basis one by one. Check if the added cycle
  • 55. Slide 31
  • 56. Slide 30
  • 57. The minimal cycle basis problem
  • 58. An example of Huffman algorithm
  • 59. Huffman codes
  • 60. Slide 26
  • 61. An example of 2-way merging
  • 62. A Greedy Algorithm to Generate an Optimal 2-Way Merge Tree
  • 63. Slide 23
  • 64. Linear Merge Algorithm
  • 65. Slide 21
  • 66. Slide 20
  • 67. Slide 21
  • 68. Linear Merge Algorithm
  • 69. Slide 23
  • 70. A Greedy Algorithm to Generate an Optimal 2-Way Merge Tree
  • 71. An example of 2-way merging
  • 72. Slide 26
  • 73. ** after Algorithm_greedy.pptx
  • 74. An example of Huffman algorithm
1/74
Volume
  • 速度 :
  • 畫質 :
  • 播放設定
00:00/1:34:33
00:00/39:17
 
 
    訪客如要回應,請先 登入
      解析度 : x
      資料夾 :
      發表時間 :
      2022-05-05 15:11:54
      觀看數 :
      469
      長度 :
      1:34:33
      發表人 :
      系統管理者
      部門 :
      www
      QR Code :